Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Lab Anal ; 36(1): e24080, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1574871

ABSTRACT

BACKGROUND: COVID-19 has become a global pandemic, and close contacts and asymptomatic patients are worthy of attention. METHODS: A total of 1844 people in close contacts with 76 COVID-19 patients were investigated, and nasopharyngeal swabs and venous blood were collected for centralized medical quarantine observation. Real-time fluorescence was used to detect SARS-CoV-2 nucleic acid in nasopharyngeal swabs of all close contacts, and the colloidal gold method was used to detect serum-specific antibodies. Levels of IgM- and IgG-specific antibodies were detected quantitatively through chemiluminescence from the first nucleic acid turned negative date (0 week) and on weekly intervals of ≤1 week, 1-2 weeks, 2-3 weeks, 3-4 weeks, 4-5 weeks, 5-6 weeks, and 6-7 weeks. RESULTS: The total positive rate of the colloidal gold method (88.5%, 23/26) was significantly higher (χ2  = 59.182, p < 0.001) than that of the healthy control group (2.0%, 1/50). There was significant difference in IgG concentration at different time points (0-7 weeks) after negative nucleic acid conversion (χ2  = 14.034, p = 0.029). Serum IgG levels were significantly higher at weekly time points of 4-5 weeks (Z = -2.399, p = 0.016), 5-6 weeks (Z = -2.049, p = 0.040), and 6-7 weeks (Z = -2.197, p = 0.028) compared with 1-2 weeks after negative nucleic acid conversion. However, there was no significant difference (χ2  = 4.936, p = 0.552) in IgM concentration between time points tested (0-7 weeks) after negative nucleic acid conversion. The positive rates of IgM and IgG in asymptomatic patients (χ2  = 84.660, p < 0.001) were significantly higher than those in the healthy control group (χ2  = 9.201, p = 0.002) within 7 weeks of negative nucleic acid conversion. CONCLUSIONS: The IgG concentration in asymptomatic cases remained at a high level after nucleic acid turned negative. Nucleic acid detection combined with IgM and IgG antibody detection is an effective way to screen asymptomatic infections.


Subject(s)
COVID-19 Serological Testing/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Adult , Aged , COVID-19/epidemiology , Carrier State/blood , China/epidemiology , Female , Gold Colloid , Humans , Male , Middle Aged
2.
Int J Clin Pract ; 75(9): e14462, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1494712

ABSTRACT

BACKGROUND AND PURPOSE: Studies have shown that some cytokines in COVID-19 patients were elevated. This study aims to assess whether IL-10, IL-1ß, IL-6, MCP-1, TNF-α, IP-10 and IL-4 serve as potential diagnostic biomarkers of COVID-19. METHODS: The above serum cytokines in COVID-19 patients and non-COVID-19 patients were detected by ELISA and SARS-CoV-2 IgM and IgG were detected by the chemiluminescence method. The independent-sample Mann-Whitney U test was utilised to compare cytokine levels in different groups and courses, the Levene T-test and T'-test were utilised to compare they in different genders and the Spearman correlation test was utilised to analyse the correlation between the cytokine levels with ages and SARS-CoV-2 IgG and IgM. RESULTS: Serum levels of IL-10, IL-1ß, MCP-1, TNF-α and IL-4 in COVID-19 patients were significantly higher than those in non-COVID-19 patients, while IL-6 were only significantly higher than in healthy people, IP-10 were significantly lower than in other diseases patients. AUCs of COVID-19 diagnosed by IL-10, IL-1ß, IL-6, MCP-1, TNF-α, IP-10 and IL-4 were 0.735, 0.775, 0.595, 0.821, 0.848, 0.38 and 0.682, respectively. In the COVID-19 patients' serum, the levels of IL-10 and MCP-1 of male were noticeably higher than those of female, and all cytokines were significantly positively correlated with age, IL-1ß and IL-4 were significantly negatively correlated with SARS-CoV-2 IgM, while IL-10, IL-1ß, IL-6, TNF- and IP-10 were significantly negatively correlated with SARS-CoV-2 IgG. IL-10 on 43-56 days was significantly lower than at 29-42 days, TNF-α at 15-42 days was significantly higher than at 0-14 days, IP-10 at 0-14 days was the highest and IL-4 at 29-42 days was significantly higher than at 0-14 days. CONCLUSIONS: The detection of IL-10, IL-1 ß, IL-6, MCP-1, TNF-α and IL-4 would assist the clinical study of COVID-19, and IP-10 may be the cytokine of early elevation in COVID-19 patients.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Chemokine CXCL10 , Cytokines , Female , Humans , Interleukin-10 , Interleukin-1beta , Interleukin-4 , Interleukin-6 , Male , SARS-CoV-2
3.
Therap Adv Gastroenterol ; 14: 17562848211035670, 2021.
Article in English | MEDLINE | ID: covidwho-1348281

ABSTRACT

BACKGROUND AND AIMS: Currently, there are no definitive therapies for coronavirus disease 2019 (COVID-19). Gut microbial dysbiosis has been proved to be associated with COVID-19 severity and probiotics is an adjunctive therapy for COIVD-19. However, the potential benefit of probiotics in COVID-19 has not been studied. We aimed to assess the relationship of probiotics use with clinical outcomes in patients with COVID-19. METHODS: We conducted a propensity-score matched retrospective cohort study of adult patients with COVID-19. Eligible patients received either probiotics plus standard care (probiotics group) or standard care alone (non-probiotics group). The primary outcome was the clinical improvement rate, which was compared among propensity-score matched groups and in the unmatched cohort. Secondary outcomes included the duration of viral shedding, fever, and hospital stay. RESULTS: Among the propensity-score matched groups, probiotics use was related to clinical improvement rates (log-rank p = 0.028). This relationship was driven primarily by a shorter (days) time to clinical improvement [difference, -3 (-4 to -1), p = 0.022], reduction in duration of fever [-1.0 (-2.0 to 0.0), p = 0.025], viral shedding [-3 (-6 to -1), p < 0.001], and hospital stay [-3 (-5 to -1), p = 0.009]. Using the Cox model with time-varying exposure, use of probiotics remained independently related to better clinical improvement rate in the unmatched cohort. CONCLUSION: Our study suggested that probiotics use was related to improved clinical outcomes in patients with COVID-19. Further studies are required to validate the effect of probiotics in combating the COVID-19 pandemic.

4.
J Med Virol ; 93(1): 528-532, 2021 01.
Article in English | MEDLINE | ID: covidwho-1217362

ABSTRACT

The situation of the coronavirus disease 2019 (COVID-19) continues to evolve, our study explored the significance of serum levels of matrix metalloproteinase 3 (MMP3) as a marker for patients with COVID-19. Sixty-two COVID-19 patients in the First Hospital of Hunan University of Chinese Medicine and Loudi Center for Diseases Prevention and Control, from January to March 2020, were sampled as the novel coronavirus pneumonia infected group. One hundred and thirty-one cases from the First Hospital of Hunan University of Chinese Medicine, including 67 healthy individuals and 64 non-COVID-19 inpatients, served as the noninfected group. Approximately every 5 days, sera from 20 cases were collected and analyzed three times, using an automatic biochemical analyzer, to detect serum MMP3 concentrations. Correlation was analyzed between MMP3 and other proinflammatory cytokines. Following normality tests, differences in serum MMP3 levels between the infected and noninfected group were analyzed via SPSS (version 25.0) software, using the Wilcoxon rank sum test. The MMP3 concentration was 44.44 (23.46 ~ 72.12) ng/mL in the infected group and 32.42 (28.16 ~ 41.21) ng/mL in the noninfected group. The difference between the two groups was statistically significant (Z = -2.799, P = .005 < .05). A positive correlation was found between MMP3 and interleukin 1ß (IL-1ß; r = .681, P = .000 < .05), and IL-6 (r = .529, P = .002 < .05). Serum MMP3 concentration, measured over three separate time points, were 55.98 (30.80 ~ 75.97) ng/mL, 34.84 (0.00 ~ 51.84) ng/mL, and 5.71 (0.00 ~ 40.46) ng/mL, respectively. Detection of serum MMP3 levels may play an important role in the development of therapeutic approaches for COVID-19 and may indicate the severity of disease.


Subject(s)
COVID-19/blood , COVID-19/enzymology , Matrix Metalloproteinase 3/blood , Biomarkers/blood , Gene Expression Regulation, Enzymologic , Humans , Inflammation/metabolism , Matrix Metalloproteinase 3/metabolism
5.
Clin Chem Lab Med ; 58(9): 1601-1607, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-623918

ABSTRACT

Objectives: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread globally. The laboratory diagnosis of SARS-CoV-2 infection has relied on nucleic acid testing; however, it has some limitations, such as low throughput and high rates of false negatives. Tests of higher sensitivity are needed to effectively identify infected patients. Methods: This study has developed fully automated chemiluminescent immunoassays to determine IgM and IgG antibodies to SARS-CoV-2 in human serum. The assay performance has been evaluated at 10 hospitals. Clinical specificity was evaluated by measuring 972 hospitalized patients and 586 donors of a normal population. Clinical sensitivity was assessed on 513 confirmed cases of SARS-CoV-2 by RT-PCR. Results: The assays demonstrated satisfied assay precision with coefficient of variation of less than 4.45%. Inactivation of specimen did not affect assay measurement. SARS-CoV-2 IgM showed clinical specificity of 97.33 and 99.49% for hospitalized patients and the normal population respectively, and SARS-CoV-2 IgG showed clinical specificity of 97.43 and 99.15% respectively. SARS-CoV-2 IgM showed clinical sensitivity of 82.54, 92.93, and 84.62% before 7 days, 7-14 days, and after 14 days respectively, since onset of symptoms, and SARS-CoV-2 IgG showed clinical sensitivity of 80.95, 97.98, and 99.15% respectively at the same time points above. Conclusions: We have developed fully automated immunoassays for detecting SARS-CoV-2 IgM and IgG antibodies in human serum. The assays demonstrated high clinical specificity and sensitivity, and add great value to nucleic acid testing in fighting against the global pandemic of the SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Infant , Middle Aged , Pandemics , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL